Minimal Spanning Tree By Marco Gallotta

A Minimal Spanning Tree (MST) is a subgraph this is connected and whose sum of its edges is minimized.

Lemma: If X is a subset of vertices in G , and e is the smallest edge connecting X to $\mathrm{G}-\mathrm{X}$, then e is part of the MST.

Kruskal's Algorithm:

```
sort the edges of G in increasing order by length
keep a subgraph S of G, initially empty
for each edge e in sorted order
    if the endpoints of e are disconnected in S
        add e to S
return S
```

Prim's Algorithm:

```
let T be a single vertex x
    while (T has fewer than n vertices)
        find the smallest edge connecting T to G-T
        add it to T
```

Prim can be speeded up by using a heap to remember, for each vertex, the smallest edge connecting T with that vertex.

Kruskal	Prim	Prim (heap)
$\mathrm{O}(\mathrm{m} \log \mathrm{m})$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{m} \log \mathrm{n})$

